
 

 

 

 



 

 

 



 

 

 

 



Про структуру: 

 

 

 

 

 

 

 



Условие линейности системы: 

•  

 
• Выполняется принцип суперпозиции: отклик на сумму входных сигналов равен 

сумме откликов на каждый сигнал в отдельности. 

 

 

Неограниченный рост сигнала на ограниченное время.  

В некоторых нелинейных системах возможно явление скоростного насыщения или режима 
скользящего процесса, когда за конечное время система достигает больших отклонений 
(например, в системах с релейным управлением). 

Зависимость поведения от начальных условий.  

В нелинейных системах решение уравнений зависит не только от текущих воздействий, но 
и от начальных условий. Это приводит к разным режимам работы при разных начальных 
состояниях.  

• Типы динамических процессов нелинейных систем зависят от начальных условий. 

 



 
• Внутри предельного цикла возможны как затухающие, так и расходящиеся 

колебания в зависимости от начальных условий: 
• Пример релейной системы, где при одних начальных условиях – устойчивое 

равновесие, при других – автоколебания:  

 



 

Особые точки (точки равновесия). 

Особые точки соответствуют состояниям равновесия системы. Их тип (узел, фокус, 
седло, центр) определяет устойчивость и характер переходных процессов. 

  

 



 

 

 



 

Самовозбуждение колебаний и предельные циклы.  

Нелинейные системы могут порождать автоколебания – периодические колебания, 
возникающие без внешнего периодического воздействия.  

Предельные циклы – это изолированные замкнутые траектории в фазовом 
пространстве, к которым стремятся переходные процессы.  

Примерами являются релейные системы, системы с насыщением, логическим 
управлением. 

Неоднозначность динамических характеристик.  

В нелинейных системах реакция на одно и то же входное воздействие может быть 
разной в зависимости от амплитуды, частоты и т.д. Например, амплитудно-фазовая 
характеристика может иметь петли гистерезиса, а переходная характеристика – 
разрывы или скачки.  

 



 

 

 

 

 Особые точки (точки равновесия) определяются из условия равенства нулю 
производных всех переменных состояния.  

Их тип (узел, фокус, седло, центр) определяет устойчивость и характер переходных 
процессов. 
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Фазовые траектории линейных систем – это линии в пространстве состояний, 
описываемые линейными дифференциальными уравнениями. Их вид зависит от корней 
характеристического уравнения: действительные корни – узлы, комплексные корни – 
фокусы или центры.  

 

Основные свойства: 

1.Нарушение принципа суперпозиции.  

Выходная реакция на сумму входных сигналов не равна сумме реакций на каждый сигнал 
отдельно.  

2. Неограниченный рост сигнала на ограниченное время.  

3. Зависимость поведения от начальных условий.  

4. Особые точки (точки равновесия). 

5. Неоднозначность динамических характеристик.  

6. Самовозбуждение колебаний и предельные циклы.  

Про нелинейности  

 



 

 

 



 

 

 

 

 

 

 

 

 

 



Типовые нелинейные элементы. Нелинейные элементы с 
однозначными непрерывными характеристиками: мертвая 
зона, насыщение, насыщение с мертвой зоной. 

Нелинейной САР называют систему, которая содержит по 
крайней мере, один нелинейный элемент. 

 

К этой группе относятся нелинейности, у которых каждому 
значению входа соответствует только одно значение выхода, то есть 
отсутствует неоднозначность, как в гистерезисе и в релейной 
характеристике. 

 

  Мертвая зона 
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Примеры: люфт в передачах, трение покоя, порог срабатывания 
датчиков и тд. 

 

 

 

 

 

 

Насыщение 
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Примеры: ограничение напряжения питания усилителя, 
максимальный ток/момент двигателя и тд. 



 

Насыщение с мертвой зоной  

 

 
 

 

 

 

 

Нелинейные элементы с однозначными разрывными 
характеристиками: двухпозиционное реле без гистерезиса, 
трехпозиционное реле без гистерезиса, идеальное 
двухпозиционное реле.  

Нелинейные элементы с однозначными разрывными 
характеристиками – это звенья, выходной сигнал которых 
изменяется скачкообразно при достижении входным сигналом 
определенных порогов, при этом значение выхода зависит только от 
текущего значения входа. 

Идеальное двухпозиционное реле 



 

! = 8 7	при	& > 0
−7	при	& < 0 

При x = 0 значение неопределенно! 

 

Двухпозиционное реле без гистерезиса 

 

В данной характеристике также 2 уровня выхода, но есть 
маленькая зона нечувствительности. 

 

 

 

 

Трехпозиционное реле без гистерезиса 

 

В таком реле имеем 3 устойчивых состояния. 
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7) Нелинейные элементы с двухзначными характеристиками: 
двухпозиционное реле с гистерезисом. Люфт, сухое трение.  

• Люфт для механической передачи.  
По правой прямой выходная величина ! возрастает, а по левой убывает. 
Переход между от возрастания к убыванию и наоборот может 
совершаться по бесчисленному множеству горизонтальных отрезков, 
соединяющих эти прямые 

 



• Двухпозиционное реле с гистерезисом 

 

 

8) Методы линеаризации. Графические методы: метод 
касательных, метод секущих. Алгебраические методы: замена 
функций линейной аппроксимацией. Аналитическая 
линеаризация в окрестности рабочей точки. Вычисление 
коэффициентов линеаризации методом наименьших квадратов 
(взял из готового файла. Хз что там написать. На лекциях не 
было) 

 



 

Необходимо выпрямить участок нашей кривой, представляющая какую—то 
характеристику системы в окрестности рабочей точки. На рисунке 1(а) мы 
выбрали некоторую рабочую точку Х0 и хотим использовать в окрестности 
этой точки Х0 упрощенную зависимость нашей величины. В данном случае 
метод касательных предлагает просто провести касательную под наиболее 
удобным углом. Дельта Х это рабочий интервал. 
 
Метод секущих – проводим прямую между двумя точками исходной кривой. 
Делается так, чтобы сумма площадей (между кривой и прямой) была 
минимальна (т.е. это ошибки линеаризации). Для этого используется метод 
наименьших квадратов. Он гарантирует минимум квадратичной ошибки. 
Квадратичная ошибка это расстояние между наиболее далекой точки от 
прямой до этой прямой. В данном случае (рис 1(б)) употребляет сумму этих 
отклонений. Необходимо обеспечить разрешимость системы уравнений 
(min(E^2)). Эту систему уравнений решаем, чтобы определить нашу кривую, 
значит степень свободы у нашей кривой должно быть равно столько, сколько 
Xi. Решением системы является Ks. 
 



 

"̇ это изменение состояния. $ это выход системы. Вместе эти два уравнения - 
система нелинейных уравнений. Уравнения нашей системы. Х – это 
состояние, U – это управление. Функция f возвращает n значений, где каждое 
значение рассчитывается на основании вектора состояния, вектора 
управления и времени. 



 

Вместо "̇ написали dX/dt, а правую часть разложили в ряд тейлора, где D1, 
D2 и тд это матричные коэффициенты разложения, т.к. функции векторные. 
Yx – это якобиант, который равен нашему коэффициенту D1 на f. Yx –
якобиан по состоянию, он показывает динамику состояния функции f. Yu – 
якобиан по управлению, показывает динамику решения в зависимости от 
управления. 
Метод наименьших квадратов: 

 



Есть какая то нелинейная функция YN которую мы пытаемся заменить 
линейной и некоторая точка линеаризации YN0, которая представляет собой 
рабочую точку. Мы не можем точно линеаризовать функцию везде. Мы 
можем это сделать в какой-то окрестности какой-то точки и хотелось бы это 
сделать в окрестности той точки, в окрестности которой чаще всего 
находимся. Это наиболее оптимально и рациональна. У нас дана такая точка, 
которая задана вектором координат. Ynk – сформированная нами система 
уравнений. У нас есть К нелинейных уравнений для каждого из комплекта 
координат. Тогда можно записать К ошибок. Х12 это аргумент, х10 – это 
наша точка линеаризации, дельта х это окрестность, по которой мы ходим 
около этой точки. Аналогично у нас может быть К ошибок по 
линеаризованной функции у. Тогда суммарное отклонением дельта у будет 
скалярным произведением этих величин. Ki на дельта х. Это будет 
расхождение. Дальше записываем квадрат ошибки. Дальше исследуем эту 
функцию на минимум. Необходимым условием является равенство нулю 
всех частных производных по всем переменным. 3.28 это наше условие. 3.29 
применяем условие 3.28 для наших уравнений. У размерность m, поэтому у 
нас m уравнений. Далее решаем систему уравнений и получаем 
3.32 тангенс угла наклона кривой. Далее идет график, представлены 
варианты его линеаризации. Справа от графика написаны уравнения этих 
величин. 3.36 коэффициенты усиления. Следующий график (ступенька) это 
пример линеаризации такого сигнала разными методами. Вот есть 
нелинейное выражение yn=ax+bx^3. Коэффициент 3.32 можем получить так 
же, как и раньше, пройдя все этапы. 
 

9) Гармоническая линеаризация. Эквивалентная линейная 
система. Определение параметров колебаний на выходе 
эквивалентной системы. Эквивалентный коэффициент 
усиления. ( Тоже хз. Взял из готового.) 



 

 

• Описывающая функция 



 

Периодический процесс на выходе НЛ элемента может быть представлен в 
виде разложения в ряд Фурье 

 

В общем случае, они зависят как от амплитуды входного сигнала Xm, так и 
от частоты w (это для 2 Ypk). Для ненагруженных элементов (без среднего 
сигнала и внешних возмущений) Y0 =0 (т.е. смещения сигналов на вх/вых 
нет). После гармонической линеаризации вх. сигнала yN(t), должны быть 
получены аппроксимации в виде разложения в ряд Фурье. Т.е. верхняя сумма 
синусоид (нелинейный ряд фурье 3.50 – какая то постоянная величина плюс 
сумма гармоник). На выходе должны получить при нулевом смещении Y0=0 
(3.53) – в котором учитываются только первые линейные гармоники. Далее 
переводим все в комплексную форму (sin + cos = e с какой то степенью). 
 

 



Последние два уравнения это коэффициенты в 3.53 – скалярные 
произведения в пространстве функций нашей изображающей функции, 
которую линеаризуем F(x) на наш синус и на наш косинус. 

• Эквивалентный коэффициент усиления GN : находится как отношение 
первых гармоник выхода ко входу. Для этого запишем: 

 
 
Где YР1 и YQ1 – коэффициенты гармонической линеаризации. Коэффициент 
усиления это отношение выхода ко входу. А выход и вход мы приняли 
линейными гармониками, значит это отношение линейных гармоник. Дальше 
посчитали, поделили одну на другую, написали чему это равно. 
Выход y(t) вход x(t). В конце переводим в экспоненциальную форму. 3.57. 

 
Из (3.60) следует, что для безынерционных НЛ меняется зависимость только 
от амплитуды Хм входного сигнала, но не от его частоты. 
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 Описывающая функция и разложение в ряд Фурье. Примеры вычисления 

коэффициентов гармонической линеаризации для однозначных и 

многозначных нелинейностей: петля гистерезиса, двухпозиционное реле. 

 

 

 

 

Описывающая функция и метод гармонической линеаризации 

Метод гармонической линеаризации (или метод гармонического баланса) 

является основным приближенным методом исследования периодических 

режимов (автоколебаний) в нелинейных системах автоматического управления. 

Суть метода и гипотеза фильтра 
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Как показано на рис. 1, нелинейная система представляется в виде 

соединения нелинейного элемента (НЭ) с характеристикой  и линейной 

части . 

Основная идея метода базируется на свойстве фильтра низких частот, 

которым обычно обладает линейная часть системы. При возникновении 

периодических колебаний на входе нелинейного звена ( ), на его выходе (

) образуется периодический сигнал сложной формы. Однако линейная часть 

системы, как правило, плохо пропускает высокие частоты, подавляя высшие 

гармоники. Это позволяет утверждать, что на вход нелинейного элемента 

возвращается сигнал, близкий к синусоидальному. 

Таким образом, мы полагаем, что входной сигнал нелинейного звена 

меняется по гармоническому закону: 

 

где  — амплитуда,  — частота. 

Разложение в ряд Фурье и коэффициенты линеаризации 

Выходной сигнал нелинейного звена  является 

периодическим, но несинусоидальным. Его можно разложить в ряд Фурье (см. 

формулы на рис. 1 и рис. 2): 

 

Для симметричных автоколебаний постоянная составляющая . 

Согласно гипотезе фильтра, мы отбрасываем высшие гармоники (2-ю и 

выше) и рассматриваем только первую гармонику: 
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Коэффициенты Фурье первой гармоники вычисляются следующим 

образом: 

 

 

где . 

Описывающая функция 

Нелинейное звено заменяется эквивалентным комплексным 

коэффициентом передачи, зависящим от амплитуды . Этот коэффициент 

называется описывающей функцией  (или ,  в разных 

обозначениях). 

В алгебраической форме описывающая функция записывается как: 

 

где: 

    — коэффициент гармонической линеаризации по основной 

составляющей (синфазная составляющая). 

    — коэффициент гармонической линеаризации по квадратурной 

составляющей (сдвинутой на ). 

Для однозначных нелинейностей (статических характеристик без 

«памяти») характеристика симметрична, и при синусоидальном входе выходной 

сигнал не имеет фазового сдвига основной гармоники относительно входа. 

Следовательно, , и описывающая функция является вещественной: 

 

Для многозначных нелинейностей (характеристик петлевого типа, 

например, гистерезис) прохождение сигнала создает фазовый сдвиг 

(запаздывание), поэтому  и появляется мнимая часть . 

 Примеры вычисления коэффициентов 
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 1. Однозначная нелинейность: Трехпозиционное реле (Реле с зоной 

нечувствительности) 

 

Рассмотрим характеристику. Это релейная характеристика с зоной 

нечувствительности  и высотой выхода . 

Если амплитуда входа , выход равен 0 (реле не срабатывает), . 

   Если , переключение происходит при угле , когда . 

Отсюда угол отсечки: 

     

Так как характеристика однозначная нечетная, . 

Вычислим  (см. формулы на рис. 10): 

 

В силу симметрии интеграл по периоду можно заменить на учетверенный 

интеграл по четверти периода (или удвоенный по полупериоду, где сигнал не 

равен нулю). На интервале срабатывания выход равен . 

 

Используя тригонометрическое тождество , получаем 

формулу, приведенную на доске (рис. 10): 
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Для двухпозиционного (идеального) реле зона нечувствительности 

отсутствует ( ). Подставляя  в формулу выше, получаем: 

 

Это означает, что эквивалентный коэффициент усиления идеального реле 

падает с ростом амплитуды сигнала. 

 2. Многозначная нелинейность: Гистерезис и Люфт 

Для многозначных характеристик путь изменения выхода при увеличении 

входа не совпадает с путем при уменьшении входа (образование петли). Это 

приводит к появлению мнимой части . 

А) Люфт (Backlash) 

На последнем изображении (фото доски с заголовком "Люфт") и рис. 11 

приведен расчет для характеристики типа "люфт" с наклоном линейного участка 

 и шириной зоны 2a (параметр a на рисунке — половина ширины люфта). 

При  (режим насыщения люфта) коэффициенты выражаются 

сложными зависимостями. 

Согласно записям на доске (последнее фото), для люфта: 

 

 

Отрицательный знак у  свидетельствует об отставании по фазе, что 

физически означает потери энергии за цикл колебаний (площадь петли 

гистерезиса). 

Б) Релейная характеристика с гистерезисом (Петля гистерезиса) 

Хотя подробный вывод для прямоугольной петли на доске представлен 

частично, общий принцип для двухпозиционного реле с гистерезисом 

(срабатывание при , отпускание при , выход ) следующий. 

Переключения происходят не симметрично относительно нуля синуса, а с 

задержкой. 
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   Коэффициент  рассчитывается аналогично реле с зоной 

нечувствительности, но с учетом ширины петли : 

     

   Коэффициент  (мнимая часть) пропорционален площади петли: 

     

Наличие  на комплексной плоскости означает, что годограф 

нелинейного звена смещается вниз от вещественной оси. 

Вывод по рисункам: 
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Показана графическая интерпретация метода: входная синусоида 

преобразуется в "срезанную" синусоиду (насыщение) или прямоугольные 

импульсы (реле). 
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показано формирование петли гистерезиса на фазовой плоскости 

(зависимость выхода от входа имеет форму петли), что требует расчета двух 

коэффициентов гармонической линеаризации (  и ). 

 

 

Основные определения: фазовое пространство, фазовый портрет, 

изображающая точка, фазовая траектория. Элементы фазовых 

портретов нелинейных систем: предельные циклы, сепаратрисы. 

Введение 

Метод фазового пространства — это геометрический метод качественного 

анализа динамических систем. Он особенно важен для нелинейных систем, так 

как для них часто невозможно найти аналитическое решение в виде формулы, но 

можно точно описать характер движения (устойчивость, колебания) с помощью 

графического представления. 

Обычно рассматривается автономная система дифференциальных 

уравнений вида: 

 

 

где время  не входит в правые части явно. 

 1. Основные определения 

 Фазовое пространство (Phase Space) 
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Фазовое пространство — это многомерное пространство, координатные 

оси которого соответствуют переменным состояния системы ( ). 

   Размерность фазового пространства равна порядку системы 

дифференциальных уравнений ( ). 

   Если  (система второго порядка), фазовое пространство называется 

фазовой плоскостью. Это наиболее частый случай рассмотрения в учебных 

курсах, так как он нагляден. 

   Каждая точка этого пространства соответствует определенному 

мгновенному состоянию системы (совокупности значений всех её координат и 

скоростей). 

 Изображающая точка (Representative Point) 

Изображающая точка (или представляющая точка) — это точка $M$ в 

фазовом пространстве, координаты которой в данный момент времени $t$ равны 

текущим значениям переменных состояния системы. 

   По сути, это геометрический образ состояния системы. 

   При изменении состояния системы во времени изображающая точка 

перемещается по фазовому пространству. 

   В точках равновесия (особых точках), где производные равны нулю, 

скорость движения изображающей точки равна нулю. 

 

Фазовая траектория (Phase Trajectory) 

Фазовая траектория — это кривая в фазовом пространстве, которую 

описывает изображающая точка при движении системы во времени (при 

изменении  от  до ). 

   Это геометрическое место точек состояний, через которые проходит 

система в процессе эволюции. 

   Важное свойство (для автономных систем): Через каждую точку 

фазового пространства (кроме особых точек) проходит одна и только одна 

фазовая траектория. Траектории не могут пересекаться (следствие теоремы 

! "# #$$$# !" " "

!
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существования и единственности решения дифференциальных уравнений). 

Пересечение возможно только в особых точках (точках равновесия). 

   Направление движения изображающей точки по траектории (стрелки) 

соответствует течению времени. 

 Фазовый портрет (Phase Portrait) 

Фазовый портрет — это совокупность всех возможных фазовых 

траекторий системы в фазовом пространстве. 

   Фазовый портрет дает полное качественное представление о динамике 

системы при любых начальных условиях. 

   Глядя на фазовый портрет, можно сразу определить: 

    1.  Количество и тип состояний равновесия (устойчивые/неустойчивые 

узлы, фокусы, седла). 

    2.  Области притяжения устойчивых состояний. 

    3.  Наличие колебательных режимов. 

2. Специфические элементы фазовых портретов нелинейных систем 
В отличие от линейных систем, где структура фазового портрета довольно 

проста (обычно одно состояние равновесия), нелинейные системы обладают 

уникальными элементами, описывающими сложные явления, такие как 

автоколебания или жесткие границы устойчивости. 

 Предельные циклы (Limit Cycles) 
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Предельный цикл — это изолированная замкнутая фазовая траектория. 

   «Замкнутая» означает, что движение по ней периодическое (система 

возвращается в исходное состояние через период ). 

   «Изолированная» — ключевое отличие от линейных консервативных 

систем (типа маятника без трения), где замкнутые траектории расположены 

сплошь (семейство эллипсов вокруг центра). У предельного цикла есть 

окрестность, в которой нет других замкнутых траекторий. 

   В физическом смысле предельный цикл соответствует режиму 

автоколебаний — незатухающих колебаний с постоянной амплитудой и 

частотой, которые поддерживаются самой системой за счет нелинейного 

источника энергии. 

Виды предельных циклов по устойчивости: 

1.  Устойчивый предельный цикл: Фазовые траектории из окрестности 

навиваются на него (стремятся к нему) при . Это рабочий режим 

большинства генераторов. 

2.  Неустойчивый предельный цикл: Траектории сматываются с него 

(удаляются) при . Часто служит границей области притяжения 

устойчивого состояния равновесия. 

3.  Полустабильный предельный цикл: Траектории навиваются с одной 

стороны и сматываются с другой. Обычно возникает в момент бифуркации 

(рождения или исчезновения цикла). 

 Сепаратрисы (Separatrices) 

 

!
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Сепаратриса (от лат. separatus — отдельный) — это особая фазовая 

траектория, которая разделяет фазовое пространство на области 

(подпространства) с качественно различным характером движения. 

   Как правило, сепаратрисы проходят через седловые особые точки 

(состояния неустойчивого равновесия типа «седло»). 

   Сепаратрисы являются «усами» седла: одни входят в седло при , 

другие выходят из него при . 

   Физический смысл: Сепаратриса является границей устойчивости «в 

большом». Если начальные условия находятся по одну сторону сепаратрисы, 

система может прийти к устойчивому равновесию. Если по другую — система 

может уйти в бесконечность или к другому состоянию равновесия. 

 

Перестройка фазового портрета – бифуркация. Классификация локальных 

структур фазового портрета через линейный анализ в окрестности 

исследуемой особой точки: узлы, центр, фокусы, седло. 

 I. Линеаризация и локальный анализ системы 

Для исследования поведения нелинейной динамической системы в 

окрестности состояния равновесия (особой точки) применяется метод 

линеаризации. Пусть система описывается нелинейным векторным 

дифференциальным уравнением: 

 

где  — вектор состояния. 

В окрестности особой точки  (где ) нелинейную функцию f(x) 

можно разложить в ряд Тейлора. Ограничиваясь членами первого порядка 

малости, мы получаем линеаризованную систему (в вариациях): 
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где  — отклонение от равновесия, а  — матрица Якоби, элементы 

которой вычисляются как частные производные функций правой части по 

координатам состояния, вычисленные в точке равновесия: 

 

 

Поведение фазовых траекторий в малой окрестности особой точки 

определяется корнями характеристического уравнения этой матрицы: 

 

где  — единичная матрица,  — собственные числа (корни). 

 II. Классификация локальных структур фазового портрета 

В зависимости от характера собственных чисел  (вещественные или 

комплексные) и их знаков, особые точки на фазовой плоскости 

классифицируются следующим образом: 

 1. Узлы (Nodes) 

Узел возникает, когда собственные числа  и  — вещественные и одного 

знака. 

   Устойчивый узел: . Все траектории стремятся к особой точке 

при . Траектории касаются направления, соответствующего собственному 

вектору с меньшим по модулю собственным числом (медленное движение). 

   Неустойчивый узел: . Траектории выходят из особой точки, 

удаляясь на бесконечность. 

 2. Седло (Saddle) 

Седло возникает, когда собственные числа — вещественные и имеют 

разные знаки ( ). 

Это всегда неустойчивая особая точка. В фазовом портрете существуют 

две особые траектории, называемые сепаратрисами. По одной паре сепаратрис 

движение происходит к точке (устойчивое направление, соответствующее 
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), а по другой — от точки (неустойчивое направление, соответствующее ). 

Все остальные траектории в окрестности седла имеют вид гипербол, которые 

сначала приближаются к сепаратрисе устойчивого движения, а затем уходят 

вдоль неустойчивой. 

 3. Фокусы (Foci) 

Фокус образуется, когда собственные числа — комплексно-сопряженные 

с ненулевой вещественной частью:  (где ). 

   Устойчивый фокус: . Траектории представляют собой 

логарифмические спирали, скручивающиеся к началу координат. Амплитуда 

колебаний затухает. Примером такой ситуации является расчет на одном из 

листов, где получено , что указывает на устойчивый фокус 

(затухающий колебательный процесс). 

   Неустойчивый фокус: . Траектории — раскручивающиеся 

спирали, система теряет устойчивость колебательным образом. 

 4. Центр (Center) 

Центр возникает, когда собственные числа — чисто мнимые:  (

). 

В этом случае траектории представляют собой замкнутые кривые (эллипсы 

или окружности), вложенные друг в друга. Это соответствует незатухающим 

колебаниям консервативной системы (без трения). 

Важное замечание: Особая точка типа "центр" является структурно 

неустойчивой. Малейшее добавление нелинейности или изменение параметров 

(например, появление трения) превращает центр в устойчивый или 

неустойчивый фокус. 

 III. Бифуркация – перестройка фазового портрета 

Нелинейные системы обладают свойством, отсутствующим у линейных: 

при плавном изменении параметров системы топологическая структура 

фазового портрета может измениться скачкообразно. Это явление называется 

бифуркацией. 
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Как указано в материалах: 

> Бифуркация — перестройка фазового портрета. 

Механизм возникновения: 

Бифуркация происходит в тот момент, когда при изменении параметра 

вещественная часть одного или пары собственных чисел проходит через ноль (

). В этот момент система становится негрубой (структурно 

неустойчивой), и характер особой точки меняется. 

Рассмотрим основные виды бифуркаций, иллюстрируемые рис. 5: 

1.  Бифуркация Андронова-Хопфа (рождение предельного цикла): 

    На нижней части рис. 5 показан процесс, когда устойчивый фокус теряет 

устойчивость. 

       До бифуркации: Имеется устойчивая особая точка (фокус), . 

Траектории скручиваются в точку. 

       Момент бифуркации: Пара комплексно-сопряженных корней 

пересекает мнимую ось ( ). 

       После бифуркации: Особая точка становится неустойчивым фокусом (

), но вокруг неё рождается устойчивый замкнутый контур — 

предельный цикл (изолированная замкнутая траектория). Это соответствует 

возникновению автоколебаний в системе. 

    Визуально на рис. 5 (снизу) видно, как из точки "вырастает" воронка или 

цикл, притягивающий траектории извне и отталкивающий изнутри (в случае 

мягкого возбуждения). 

2.  Бифуркация вилки (Pitchfork Bifurcation) или седло-узловая 

бифуркация: 

    На верхней правой части рис. 5 изображена ситуация изменения 

количества и типа особых точек. 
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       Обычно это происходит, когда вещественное собственное число 

проходит через ноль. 

       На схеме видно, как одна устойчивая точка может "расщепиться" на 

три: одна становится неустойчивой (седлом), а по бокам возникают две новые 

устойчивые точки (узлы или фокусы). Либо наоборот, при слиянии точек они 

могут аннигилировать. 

       Стрелки на рис. 5 (верхняя часть) показывают направления потоков, 

которые меняются при прохождении параметра через критическое значение 

(бифуркационное значение). 

 

Таким образом, анализ через собственные числа (линейный анализ) дает 

классификацию локальных точек (узел, седло, фокус), а переход собственных 

чисел через мнимую ось служит индикатором бифуркации — качественной 

перестройки всей структуры фазового портрета системы. 
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Фазовые траектории нелинейных систем — 4 класса траекторий 

(область устойчивых движений, область устойчивых автоколебаний, 

область неустойчивых движений, область сложной динамики). 

Способы построения фазовых траекторий и фазовых портретов: 

численное моделирование с применением нескольких способов. 

Классификация фазовых траекторий нелинейных систем (4 класса) 

В отличие от линейных систем, где существует, как правило, только одно 

состояние равновесия, фазовое пространство нелинейной системы может быть 

разделено на различные области со своим уникальным поведением. В 

зависимости от поведения изображающей точки при , можно выделить 

четыре основных класса траекторий (областей фазового пространства). 

 

!!"
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 1. Область устойчивых движений (Притяжение к точке покоя) 

Это область фазового пространства, называемая областью притяжения 

(или бассейном притяжения), где все траектории сходятся к устойчивому 

состоянию равновесия (аттрактору типа «точка»). 

   Характеристика: При любых начальных условиях из этой области 

система с течением времени приходит в состояние покоя. Переходный процесс 

затухает. 

   Вид на фазовой плоскости: Траектории представляют собой спирали 

(устойчивый фокус) или кривые (устойчивый узел), направленные к точке 

равновесия. 

   Физический смысл: Система диссипативна, энергия рассеивается, и 

объект останавливается в заданном положении. 

 2. Область устойчивых автоколебаний (Предельные циклы) 
Это уникальная особенность нелинейных систем. Траектории из этой 

области стремятся не к точке, а к замкнутой изолированной кривой — 

устойчивому предельному циклу. 

 

   Характеристика: Независимо от того, где началась траектория (внутри 

цикла или снаружи, в пределах области притяжения), со временем движение 

системы выходит на периодический режим с постоянной амплитудой и частотой. 
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   Вид на фазовой плоскости: Замкнутая кривая, к которой наматываются 

спирали как изнутри, так и снаружи. 

   Физический смысл: В системе устанавливается баланс между 

поступлением энергии (обычно от некоторого постоянного источника) и ее 

диссипацией. Пример: работа тактового генератора, биение сердца, вибрация 

струны скрипки. 

 3. Область неустойчивых движений 

Это область начальных условий, из которой фазовые траектории уходят 

либо в бесконечность («разнос» системы), либо переходят в другую область 

притяжения (к другому аттрактору). 

 

   Характеристика: Изображающая точка удаляется от состояния 

равновесия или замкнутой траектории. 

   Вид на фазовой плоскости: 

       Неустойчивые точки равновесия: Седла, неустойчивые узлы и фокусы. 

Стрелки на траекториях направлены от точки. 

       Неустойчивые предельные циклы: Замкнутые траектории, от которых 

соседние траектории «отталкиваются» (репеллеры). 

   Физический смысл: Система не способна удерживать заданное 

состояние; малейшее возмущение приводит к лавинообразному нарастанию 

отклонения или переключению системы в другой режим. 

 4. Область сложной динамики (Хаос и странные аттракторы) 

Это область, где поведение системы является детерминированным, но 

непериодическим и чрезвычайно чувствительным к начальным условиям. 

   Характеристика: Две траектории, начавшиеся бесконечно близко друг к 

другу, со временем экспоненциально расходятся, но остаются в ограниченной 

области фазового пространства. Траектория никогда не замыкается и никогда не 

пересекает сама себя (в пространстве состояний размерности ). !!
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   Вид на фазовом портрете: Образуется странный аттрактор. Визуально 

это выглядит как клубок траекторий с фрактальной структурой (например, 

аттрактор Лоренца или Рёсслера). 

   Физический смысл: Динамический хаос. Турбулентность потоков 

жидкости, сложные режимы в лазерах или химических реакциях. Предсказать 

точное состояние системы на длительное время вперед невозможно. 

 Часть 2. Способы построения фазовых траекторий и портретов (Численное 

моделирование) 

Аналитические методы (например, метод изоклин) применимы в основном 

для систем 2-го порядка. Для систем более высокого порядка и сложных 

нелинейностей основным инструментом является численное интегрирование 

дифференциальных уравнений. 

Общая постановка задачи: Система приводится к форме Коши (в 

пространстве состояний): 

 

где  — вектор состояния,  — нелинейная вектор-функция. 

Построение фазового портрета заключается в многократном решении этой 

системы для сетки различных начальных условий. 

 Основные методы численного моделирования: 

 1. Метод Эйлера (Euler method) 

Самый простой одношаговый метод. 

   Суть: Следующее значение вычисляется как , где  

— шаг интегрирования. 

   Применение: Используется только в учебных целях или для грубой 

оценки. 

   Недостатки: Низкая точность (порядок ошибки ) и плохая 

устойчивость. В нелинейных системах может приводить к ложному 

«раскручиванию» спиралей там, где должен быть замкнутый цикл. 

 2. Методы Рунге-Кутты (Runge-Kutta methods) — Стандарт де-факто 

!" # $# "!$!" # " $ " "
!$
= =

! !
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Наиболее популярная группа методов для построения гладких фазовых 

траекторий. Чаще всего используется метод Рунге-Кутты 4-го порядка (RK4). 

   Суть: На каждом шаге вычисляется наклон функции в четырех точках (в 

начале, две в середине и одна в конце интервала), и берется их взвешенное 

среднее. 

   Алгоритм: 

     

     

    ...  

     

   Преимущества: Высокая точность ( ) и стабильность для 

большинства нежестких систем. Идеален для визуализации предельных циклов. 

 3. Методы для жестких систем (Stiff systems methods) 
Нелинейные системы часто бывают «жесткими» (stiff) — это когда в 

системе протекают процессы с очень разными скоростями (например, быстрая 

зарядка конденсатора и медленный разряд). 

   Проблема явных методов (RK4): Требуют чрезвычайно малого шага $h$, 

иначе решение «взрывается». 

   Решение: Использование неявных методов (например, метод Гира или 

неявные методы Рунге-Кутты, `ode15s` или `ode23tb` в MATLAB). 

   Суть: Значение  находится путем решения нелинейного уравнения на 

каждом шаге (итерации Ньютона). Это вычислительно сложнее, но позволяет 

делать большие шаги по времени без потери устойчивости. 

 

 4. Методы событийного моделирования (Zero-crossing) 

Актуальны для нелинейных систем с разрывными характеристиками (реле, 

кулоновское трение, зона нечувствительности). 
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   Суть: Алгоритм не просто делает шаг h, а точно отслеживает момент 

времени, когда переменная пересекает пороговое значение (например, 

переключение реле), корректирует шаг, чтобы попасть точно в точку 

переключения, и перезапускает решатель. 

   Зачем нужно: Без этого метода фазовая траектория вблизи точек 

переключения будет «дрожать» или проскакивать важные границы (например, 

скользящий режим). 

 Алгоритм построения фазового портрета: 

1.  Выбор области: Определяются границы интересующей области 

фазового пространства (например, ). 

2.  Сетка начальных условий: Выбирается набор точек  внутри этой 

области. 

3.  Интегрирование: 

       Для каждой точки запускается численный решатель (например, RK4). 

       Рассчитывается массив точек траектории  на интервале . 

       Важно: Для полного анализа часто интегрируют не только в прямом 

времени ( ), но и в обратном ( ), чтобы найти источники (неустойчивые 

узлы) и границы бассейнов притяжения. 

4.  Визуализация: Построенные массивы точек  

отрисовываются на плоскости, образуя полную картину динамики системы. 
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Вопрос 14 
1. Ляпуновские характеристические показатели (ЛХП) 
Ляпуновские показатели — это числовые характеристики, описывающие асимптотическое 
поведение решений динамических систем. Для траектории x(t) системы x˙=f(x) ЛХП λi 
определяются как: 
λi =t→∞lim t1 ln∥δxi (t)∥,  
где δxi (t) — возмущение вдоль i-го направления в фазовом пространстве. 
Свойства и интерпретация: 
Если все λi <0, траектория асимптотически устойчива (возмущения затухают). 
Если хотя бы один λi >0, система демонстрирует хаотическое поведение (экспоненциальное 
разбегание траекторий). 
λi =0 соответствует нейтральной устойчивости (например, периодические движения). 
Пример. Для системы Лоренца при классических параметрах один показатель положителен, 
что подтверждает хаос. 

 
2. Устойчивость по Лагранжу 
Определение. Траектория x(t) называется устойчивой по Лагранжу, если она остаётся в 
ограниченной областифазового пространства при t→+∞: 

∃R>0:∥x(t)∥≤R∀t≥0. 

Пример: движение планеты по замкнутой орбите (ограничено, но не обязательно возвращается 
точно в исходную точку). 

 
3. Устойчивость по Пуассону и возвраты Пуанкаре 
Устойчивость по Пуассону. Траектория x(t) устойчива по Пуассону, если она бесконечно 
часто возвращается в любую окрестность начальной точки x0 : 
∀ε>0∃{tn }→+∞:∥x(tn )−x0 ∥<ε. 
Теорема Пуанкаре о возвратах. Для сохраняющих меру динамических систем (например, 
гамильтоновых) почти все траектории возвращаются в сколь угодно малые окрестности 
начальных условий. 

 
 

4. Типы движений в динамических системах 
Периодические движения 
Траектория точно повторяется через фиксированный период T: x(t+T)=x(t)∀t. 
Пример: гармонический осциллятор x¨+ω2x=0. 
Квазипериодические движения 
Движение представляется суммой нескольких периодических процессов с несоизмеримыми 
периодами: x(t)=k=1∑n Ak cos(ωk t+φk ),ωj ωi ∈/Q. 
Фазовая траектория заполняет тор в фазовом пространстве. 
Пример: движение планет в многопланетной системе (при отсутствии резонансов). 
Хаотические движения 
Экспоненциальная чувствительность к начальным условиям (положительный ЛХП). 
Непредсказуемость на больших временах. 
Странные аттракторы (фрактальная структура). 
Примеры: система Лоренца, отображение Хенона. 



15 вопрос 
Устойчивость по Ляпунову 

 
 

 

Анализ фазовой траектории на устойчивость по линейному 
приближению и теорема Ляпунова 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

 



 

 
 
 

 



16.ЛХП аттракторов: определение аттракторов, их виды, 
правило сигнатур (знаков ЛХП). Алгоритм вычисления 
старшего ЛХП. Карты ЛХП и их применение к анализу 
поведения нелинейных систем. 

Ляпуновские характеристические показатели (ЛХП) — это 
числа, которые количественно характеризуют среднюю скорость 
сближения или расхождения близких траекторий в фазовом 
пространстве динамической системы. Говоря простым язычем, они 
показывают, как быстро система "забывает" своё начальное 
состояние. 

Аттрактор — это множество состояний в фазовом пространстве, к 
которому с течением времени притягиваются все близлежащие 
траектории. Это может быть точка (равновесие), замкнутая кривая 
(цикл), тор или сложная фрактальная структура (странный 
аттрактор) 

Виды аттракторов и правило сигнатур ЛХП 

Ключевая идея: тип аттрактора можно однозначно определить по 
знакам его ЛХП — это и есть правило сигнатур. Знаки ЛХП 
показывают, какие процессы доминируют в разных направлениях 
вблизи аттрактора: сжатие (отрицательный ЛХП), нейтральное 
движение (нулевой ЛХП) или растяжение (положительный ЛХП). 

В следующей таблице систематизированы основные типы 
аттракторов и их ЛХП 



 

Обратите внимание, что для существования устойчивого хаоса 
система должна иметь как минимум три ЛХП с комбинацией 
знаков (+, 0, -), где сумма всех показателей отрицательна (сжатие 
преобладает над растяжением). Положительный ЛХП — это 
количественная мера хаотичности системы. 

⚙ Как вычисляют ЛХП? Алгоритмы и идея 

Прямое вычисление полного спектра ЛХП — сложная численная 
процедура. Общая идея алгоритмов (например, метода Бенеттина) 
заключается в следующем: 

1. Линеаризация вдоль траектории: Изучается эволюция не одного 
решения, а пучка из нескольких бесконечно малых векторов 
возмущения, стартующих из одной точки. 

2. Ортогонализация: Чтобы все векторы не свернулись в 
направлении самого быстрого роста, их периодически 
ортогонализируют (например, процессом Грама-Шмидта). 

3. Расчет показателей: Норма каждого векора в среднем растет 
как eλiteλit. ЛХП вычисляется как предел среднего логарифма этой 
нормы за большое время: λi=lim⁡t→∞1tln⁡∣∣δxi(t)∣∣∣∣δxi(0)∣∣λi
=limt→∞t1ln∣∣δxi(0)∣∣∣∣δxi(t)∣∣ . 



Старший (наибольший) ЛХП (λ₁) вычисляется проще, так как не 
требует отслеживания всего пучка векторов. Достаточно 
отслеживать один случайный вектор возмущения — со временем 
он сориентируется вдоль направления наиболее быстрого роста, и 
его норма будет определяться λ₁. Именно он определяет время 
предсказуемости системы Tp∼1/λ1Tp∼1/λ1. 

" Карты ЛХП и их применение 

Карты ЛХП — это двумерные диаграммы, на которых по осям 
отложены параметры системы (например, коэффициент усиления и 
постоянная времени), а цветом или штриховкой обозначено 
значение старшего ЛХП или тип режима (порядок/хаос). Это 
мощный инструмент для анализа глобального поведения системы. 

Применение карт ЛХП: 

• Глобальный анализ: Визуальное определение областей 
параметров, где система демонстрирует периодическое, 
квазипериодическое или хаотическое поведение. 

• Поиск бифуркаций: Резкое изменение ЛХП на карте указывает на 
границу (бифуркацию), где качественно меняется поведение 
системы (например, рождение хаоса). 

• Оптимизация и управление: Позволяют выбирать параметры, 
обеспечивающие желаемый режим работы, или избегать 
хаотических областей, если они нежелательны. 

• Сравнение моделей: Карты ЛХП, построенные для упрощенной 
модели и реальной системы, помогают оценить адекватность 
модели. 

! Выводы 

ЛХП являются строгим математическим инструментом, 
переводящим качественное описание "хаоса" и "сложного 
поведения" на язык количественных измерений. Они позволяют 



классифицировать аттракторы, оценивать устойчивость и 
предсказуемость систем, а их визуализация в виде карт даёт 
полную картину эволюции системы в зависимости от параметров. 

Для более глубокого изучения рекомендую учебники по 
нелинейной динамике и хаосу, например, работы С.П. Кузнецова, а 
также специализированные научные статьи, где подробно 
разбираются численные методы расчёта ЛХП. 

 

 

 

17.Понятие об адаптивных системах управления. Общие 
принципы построения адаптивных систем управления. 

 

**Адаптивные системы управления** — это системы, способные 
автоматически изменять свои параметры или структуру в процессе 
эксплуатации для поддержания заданного или оптимального 
качества регулирования при изменяющихся характеристиках 
объекта управления и внешних воздействиях.   

 

**Общие принципы построения адаптивных систем:**   

 

1. **Самонастройка параметров регулятора** — в процессе работы 
система автоматически корректирует коэффициенты регулятора 

(например, ) так, чтобы показатели качества 
регулирования оставались на заданном уровне.   

2. **Использование моделей объекта** — адаптивные системы 
часто включают модель объекта управления, которая постоянно 
уточняется по данным измерений.   

3. **Применение поисковых методов** — для настройки 
параметров могут использоваться алгоритмы поиска экстремума 



функции качества (например, градиентные методы, случайный 
поиск).   

4. **Использование функций Ляпунова** — для обеспечения 
устойчивости адаптивных систем применяются критерии 
устойчивости на основе функций Ляпунова.   

5. **Включение экстраполяционных и прогнозирующих блоков** 
— для учёта будущих изменений воздействий и параметров 
объекта.   

6. **Применение синергетических принципов** — построение 
систем, способных к самоорганизации и согласованной работе 
подсистем.   

 

**Примеры адаптивных систем:**   

- Самонастраивающиеся поисковые системы с использованием 
функций чувствительности.   

- Системы с моделями эталонного поведения и коррекцией 
параметров в реальном времени.   

- Адаптивные оптимальные системы на основе экстраполяции 
возмущений.   

 

**Отличие от обычных систем:**   

В отличие от систем с жёсткой настройкой, адаптивные системы 
способны подстраиваться под изменения условий работы без 
вмешательства оператора.   

 

*Источник: разделы 1.9 (классификация САР) и 8 (адаптивные и 
оптимальные системы) учебника «Теория автоматического 
управления» Савина М.М. и др.* 



1. Иерархическая структура управления. История применения 
управляющих вычислителей. Квантование сигналов. Замкнутый контур 
управления с ЭВМ. Проектирование цифровых систем управления, задачи, 
методы, общая схема. 

1.1. Иерархичная структура управления 
В обобщённой структуре управления технологическим объектом 

можно выделить несколько уровней (рис. 1.1). 

 
Первый уровень — непосредственное управление объектом по реально 

измеряемым координатам с помощью регуляторов с прямой или обратной 
связью. Если управляется более одной регулируемой переменной, оно 
называется многомерным. Автоматическое управление началом и 
окончанием рабочего цикла также относится к этому уровню. 

Второй уровень объединяет операции контроля за объектом 
управления. Здесь осуществляется наблюдение за характеристиками 
объекта, проверка пределов безопасных изменений. Информация этого 
уровня используется для предупреждения персонала о возможности 
аварийной ситуации. Автоматически предпринимаемые действия для 
устранения возмущений или остановки процесса называются аварийным 
управлением. 

Третий уровень связан с выполнением процедур оптимизации, в 
результате которых максимизируется эффективность или выход объекта 
либо минимизируется расход энергии или стоимость. Часто наиболее 
важной оказывается оптимизация установившегося состояния процесса — 
статическая оптимизация. 



Четвёртый уровень — координация взаимного действия нескольких 
объектов. 

Пятый уровень предназначен для организации управления: вся 
система объектов организуется с учётом планируемых рынков сбыта, сырья 
и персонала. 

На каждом уровне можно использовать управление с обратной связью. 
Если на всех уровнях используется управление с обратной связью, то можно 
говорить о многоуровневой структуре контуров управления. 

1.2. История применения управляющих вычислителей 
Внедрение средств автоматизации проходило поэтапно. 
В 1959 г. впервые для управления в режиме нормальной эксплуатации 

использованы специализированные вычислители для регистрации и 
обработки данных, а также для контроля. Непосредственное управление 
выполнялось аналоговыми средствами из-за малой надёжности тогдашних 
вычислителей. 

Затем цифровые управляющие вычислители стали использоваться для 
формирования задающих переменных для аналоговых регуляторов 
(программное управление), например для оптимизации объекта. 

С 1962 г. управляющие вычислители применяются для 
непосредственного цифрового регулирования в замкнутых контурах на 
объектах химического производства и электростанциях. 

Создание более мощных вычислителей и математического обеспечения 
расширило их применение. Вычислители стали неотъемлемой частью 
автоматизированных систем управления. 

Дешёвые микропроцессоры появились в 1971 г., что позволило 
создавать микро-ЭВМ. В 1975 г. начали выпускаться микро-ЭВМ, 
специально предназначенные для контроля и управления объектами с 8–16 
регулируемыми переменными. Они стали использоваться вместо 
аналоговых устройств и мини-ЭВМ на нижних уровнях структуры 
управления. 

1.3. Квантование сигнала 
Данные, обрабатываемые управляющими ЭВМ, предварительно 

квантуются по времени и преобразуются в цифровую форму (рис. 2.1). Они 
представляют собой дискретные сигналы, квантованные как по времени, 
так и по амплитуде. 

В отличие от непрерывных, сигналы в ЭВМ принимают дискретные 
значения в дискретные моменты времени. Формируется 
последовательность амплитудно-модулированных импульсов. В аналого-
цифровом преобразователе значение амплитуды импульса подвергается 
округлению или усечению. 

Квантование по времени — периодический процесс с тактом T0, 
выполняется мультиплексором с АЦП. Оцифрованные данные 



обрабатываются в процессоре по алгоритмам. Если исполнительное 
устройство имеет аналоговый вход, данные поступают в ЦАП с фиксатором 
(эстраполятором нулевого порядка). 

 

 
С учётом упрощений (пренебрежение временем обработки TR и 

малыми эффектами квантования по уровню при использовании ЭВМ с 
длиной слова ≥16 разрядов и АЦП ≥10 разрядов) структура замкнутого 
контура управления с ЭВМ показана на рис. 2.3. Квантователи, действуя 
синхронно, вырабатывают сигналы, дискретные только во времени. 
Управляющая переменная u вычисляется по запрограммированному 
алгоритму на основе регулируемой переменной y и заданной переменной w. 

 



 
1.4. Проектирование цифровых систем управления: задачи, 

методы, общая схема 
В рамках методики проектирования должны быть решены следующие 

задачи: 
1. Получение информации об объекте управления и сигналах — 

исходные данные в виде измерений, моделей объектов и сигналов, 
ошибок. Используются методы идентификации и оценивания 
параметров. 

2. Выбор структуры системы управления — определение типа системы: 
с одним входом и выходом, с перекрёстными связями, с многими 
входами и выходами. 

3. Разработка алгоритмов для управления в прямой цепи и цепях 
обратных связей (синтез и настройка) — завершающий этап 
проектирования. Настройка может выполняться вручную, 
автоматизированно на ЭВМ или с использованием 
самооптимизирующихся адаптивных алгоритмов. 

4. Фильтрация шумов — подавление высокочастотных шумов 
аналоговыми и цифровыми фильтрами. 

5. Корректирующие алгоритмы в прямых цепях и цепях обратных 
связей исполнительных устройств — применяются в зависимости от 
конструкции исполнительных устройств. 

Общая схема процесса проектирования приведена на рис. 2.4. Для 
параметрической оптимизации простых алгоритмов достаточно 
простейших моделей объектов. Для однократного расчёта алгоритмов на 
ЭВМ нужны точные модели, получаемые методами идентификации. Если 
процесс получения информации и расчёта алгоритма непрерывен и 
происходит в реальном времени, возможно построение 
самооптимизирующейся адаптивной системы. 



 
2. Дискретные функции и разностные уравнения. Пример 

преобразования экспоненциальной функции из непрерывной в дискретную. 
Представление неявной функции в виде разностного уравнения. 

Дискретность (и, следовательно, разрывность) сигналов обусловлена 
их квантованием по уровню и (или) по времени. В противоположность 
непрерывным сигналам, которые описываются непрерывными функциями 
времени, дискретные сигналы могут принимать лишь дискретные значения 
в дискретные моменты времени. 

Сигналы, дискретные только во временной области представляют 
собой последовательности импульсов, появляющихся в определенные 
моменты времени. Обычно дискретный сигнал получается в результате 
периодического прерывания непрерывного сигнала с постоянным тактом.  

Существуют разные способы модуляции отдельных импульсов, 
входящих в последовательность. Они отличаются допустимыми 
значениями амплитуд, шириной импульсов и модулирующей частотой. В 
цифровых системах управления обычно применяется лишь амплитудная 
модуляция импульсов, причем в основном тот ее вариант, при котором 
высота импульса пропорциональна текущему значению непрерывного 
сигнала, ширина постоянна, а интервалы между импульсами одинаковы и 
равны такту квантования (см. рис. 3.1.1). 

Поскольку к дискретным сигналам этого типа применима теорема 
суперпозиции, они описываются линейными соотношениями, 
аналогичными по форме уравнениям линейных динамических систем. Рис. 
3.1.1 иллюстрирует принцип получения последовательности импульсов, 
основанный на пропускании непрерывного сигнала x(t) через ключ, 
который периодически, с тактом квантования T0, замыкается на время h. 
Если длительность импульса h существенно меньше такта квантования T0, 
а за ключом стоит линейное звено с постоянной времени T1≫h, то 



последовательность импульсов xp(t) можно приближённо рассматривать как 
дискретный сигнал xT(kT0), показанный на рис. 3.1.2. В этом случае ключ 
действует как идеальный квантователь, и величины xT(kT0) равны 
мгновенным значениям амплитуд. 

 

 

 



 

 

 



3. Разностные уравнения: левые и правые производные, пример 
дискретизации уравнения первого порядка. Решетчатые функции. 

 

 

 



 

 

 



 
4. Применение преобразования Лапласа для анализа дискретных 

функций времени. Дискретное преобразование Лапласа. Теорема 
Котельникова (прерывания, Шеннона). Спектр дискретного сигнала, 
нупольный портрет дискретной системы. Фиксирующий элемент 
(экстраполятор нулевого порядка). 

 

 



 

 

 



 

 

 



 
 



5.(22)z-преобразование. Переход к z-преобразованию импульсного 
сигнала. Обратное z-преобразование.  

Z-преобразование является математическим инструментом, используемым в теории 
дискретных и цифровых систем управления для анализа и синтеза импульсных 
систем. Оно играет ту же роль для дискретных систем, что и преобразование Лапласа 
для непрерывных. 

Z-преобразование дискретной последовательности ![#] определяется как: 

%(') = *![#]
!

"#$
'%", 

где ' — комплексная переменная, ![#] — значения сигнала в дискретные моменты 
времени #, (, — период квантования). 

Переход к z-преобразованию импульсного сигнала 
Импульсный сигнал формируется путём квантования непрерывного сигнала !(-) по 
времени и взятия его значений в моменты - = #,. Такой сигнал может быть 
представлен в виде решётчатой функции ![#] = !(#,). 
Для перехода к z-преобразованию: 

1. Сигнал представляется как последовательность дискретных отсчётов. 

2. К полученной последовательности применяется прямое z-преобразование. 

3. Если известна передаточная функция непрерывной части системы .(/), то z-
преобразование импульсной системы может быть получено через 
дискретизацию и использование формулы: 

.(') = 0{ℒ%&[.(/)]'#"(}, 
где 0 — оператор z-преобразования, ℒ%& — обратное преобразование Лапласа. 

При этом связь между дискретизацией непрерывных сигналов и переходом к z-форме 
позволяет анализировать устойчивость и динамику цифровых систем. 

Обратное z-преобразование 
Обратное z-преобразование позволяет восстановить дискретную 
последовательность ![#] по её z-изображению %('). Основные методы нахождения 
обратного z-преобразования: 

1. Метод разложения в ряд Лорана — представление %(') в виде ряда по 
степеням '%&, коэффициенты которого являются значениями ![#]. 

2. Метод вычетов — использование формулы: 

![#] = 1
2678%('))

'"%&9', 
 



где контур : охватывает все особые точки %('). 
3. Метод разложения на простые дроби — аналогично обратному преобразованию 
Лапласа, с последующим использованием таблиц z-преобразований. 

6.(23)Дискретная передаточная функция. Пример вычисления 
дискретной передаточной функции апериодического звена. Общее 
выражение для дискретной передаточной функции. Свойства 
дискретной передаточной функции: статические системы, системы с 
астатизмом, реализуемость, связь с импульсной переходной функцией, 
последовательное соединение подсистем.  

Дискретная передаточная функция .(') определяется как отношение z-
преобразований выходного и входного сигналов системы при нулевых начальных 
условиях: 

.(') = ;(')
<(') = *=(>

!

*#$
,$)'%* , 

 

где =(>,$) — импульсная переходная функция системы, ,$ — такт квантования. 

Рассмотрим апериодическое звено с непрерывной передаточной функцией: 

.(/) = ?
1 + ,/ =

?+

A + / , A =
1
, , ?

+ = ?
,. 

Импульсная переходная функция: 

=(-) = ?+C%,' . 
Дискретная передаточная функция: 

.(') = ?+*C%,*(!
!

*#$
'%* = ?+'

' − C%,(! . 

Общее выражение дискретной передаточной функции 

Для системы, описываемой разностным уравнением: 

;(E) + A&;(E − 1) + ⋯+ A-;(E − G) = H$<(E) + H&<(E − 1) + ⋯+ H-<(E − G), 
 

дискретная передаточная функция имеет вид: 

.(') = H$ + H&'%& +⋯+ H-'%-
1 + A&'%& +⋯+ A-'%-

 

Свойства дискретной передаточной функции 

1) Статические системы 



Для статического объекта коэффициент усиления: 

? = lim	
.→&

.(') = ∑ H0-
0#$

1 + ∑ A0-
0#&

. 

2)  Системы с астатизмом 

Если система содержит интегратор, то в передаточной функции появляется полюс ' =
1: 

.(') = 1
1 − '%& ⋅

H$ + H&'%& +⋯+ H-'%-
1 + A&'%& +⋯+ A-%&'%-1&

. 
 

Установившаяся скорость изменения выхода при ступенчатом входе: 

Δ;(E) = ∑H0
1 + ∑A0

<$. 

3)  Реализуемость 

Передаточная функция реализуема, если: 

• Степень числителя ≤ степени знаменателя, 

• В разностном уравнении выходной сигнал не зависит от будущих значений 
входного сигнала. 

Для формы .('%&): 
G ≤ # (порядок числителя ≤ порядка знаменателя). 

4)  Связь с импульсной переходной функцией 

Импульсная переходная функция =(E) определяется из разностного уравнения 
при <(0) = 1, <(E) = 0 для E > 0: 

=(0) = H$, 
=(1) = H& − A&=(0), 
=(2) = H2 − A&=(1) − A2=(0), 

и т.д. 

В общем виде: 

=(E) =
⎩
⎨

⎧H3 −* A0
3

0#&
=(E − V), E ≤ G,

−* A0
-

0#&
=(E − V), E > G.

 

 
  

5) Последовательное соединение подсистем 



Для последовательного соединения подсистем без промежуточных 
квантователей передаточные функции перемножаются: 

.(') = .&(') ⋅ .2('). 
Если между подсистемами есть квантователи, то сначала объединяют непрерывные 
части, затем применяют z-преобразование. 

7.(24)Полюса передаточной функции и анализ устойчивости. 
Расположение действительных полюсов на плоскости z и порождаемые 
ими переходные процессы. Условие асимптотической устойчивости. w 
(билинейное) преобразование и алгебраические критерии устойчивости 
для цифровых систем.  

В дискретных системах управления полюса передаточной функции .(') определяют 
характер переходных процессов и устойчивость системы. Полюса — это корни 
характеристического уравнения знаменателя 

Расположение действительных полюсов на плоскости z и порождаемые ими 
переходные процессы 

• Если полюс действительный и лежит внутри единичного круга (∣ ' ∣< 1), 
переходный процесс сходится к нулю (устойчивый). 

• Если полюс лежит вне единичного круга (∣ ' ∣> 1), 
процесс расходится (неустойчивый). 

• При полюсе на границе круга (∣ ' ∣= 1) процесс не затухает (граница 
устойчивости). 

Условие асимптотической устойчивости 

Система асимптотически устойчива, если все полюса её передаточной функции 
расположены внутри единичного круга на плоскости ': 

∣ '0 ∣< 1, V = 1,2, … ,G. 
w (билинейное) преобразование и алгебраические критерии устойчивости 

Для применения алгебраических критериев устойчивости (Рауса, Гурвица) к 
дискретным системам используется билинейное преобразование: 

Z = ' − 1
' + 1 , ' =

1 + Z
1 − Z. 

Это преобразование отображает: 

• Внутренность единичного круга плоскости ' → левую полуплоскость 
плоскости Z; 



• Границу единичного круга (∣ ' ∣= 1) → мнимую ось Z; 

• Внешность круга → правую полуплоскость Z. 

После подстановки ' = &14
&%4 в характеристический полином [(') получается 

полином [‾(Z), к которому применяются критерии Гурвица или Рауса. 

8.(25)Компенсаторы. Апериодические регуляторы различных порядков.  

компенсационные регуляторы рассматриваются как одна из категорий структурно 
оптимизируемых систем управления. Их основная идея — компенсация динамики 
объекта путём соответствующего выбора структуры и параметров регулятора. 

• Компенсаторы могут быть с нулевой или полюсной компенсацией, что 
позволяет улучшить качество переходных процессов. 

• Часто используются для систем с конечным временем 
установления (апериодические регуляторы), где переходный процесс 
завершается за конечное число шагов. 

• Компенсационные алгоритмы позволяют точно задать желаемое 
расположение полюсов замкнутой системы, что обеспечивает требуемые 
динамические свойства. 

Основные свойства и преимущества 

• Конечное время переходного процесса — система достигает установившегося 
состояния за конечное число тактов. 

• Минимальные вычислительные затраты на синтез (по сравнению с 
регуляторами состояния). 

• Хорошая применимость в адаптивных системах благодаря простоте 
настройки и малой вычислительной сложности. 

• Высокий порядок регуляторов позволяет улучшить качество управления в 
системах с сложной динамикой. 

Апериодические регуляторы — это регуляторы, обеспечивающие монотонный 
переходный процесс без перерегулирования. В книге они делятся на регуляторы с 
конечным временем установления и модифицированные апериодические 
регуляторы повышенного порядка. 

Порядок апериодических регуляторов 

• Первого порядка: простейшая форма, используется для объектов с одной 
постоянной времени. 

• Второго и выше порядков: применяются для объектов с колебательными или 
инерционными звеньями. 



Апериодические регуляторы часто используются в самонастраивающихся 
(адаптивных) системах, так как их параметры легко пересчитываются при изменении 
модели объекта. 
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1. Дискретные ПИД-регуляторы и их модификации. Способы 

настройки параметров ПИД-регуляторов. 

 

 Дискретные ПИД-регуляторы: Теория, структура и модификации 
 

Дискретные системы управления (цифровые системы) отличаются от 

непрерывных тем, что сигналы в них квантуются по времени и уровню. 

Центральным элементом таких систем является цифровой регулятор, который 

реализует алгоритм управления, чаще всего — дискретный аналог ПИД-закона 

(пропорционально-интегрально-дифференциального). 

 

1. Общая структура дискретной системы 

 

Структурная схема цифровой системы управления представлена на рис. 1. 

 

Она включает в себя: 

   Задающее воздействие  и ошибку . 

   Импульсный элемент (ключ), работающий с периодом квантования  (на 

схеме обозначен как ), преобразующий непрерывный сигнал ошибки в 

дискретную последовательность . 

   Дискретный регулятор с передаточной функцией  или , 

формирующий управляющее воздействие . 
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   Фиксатор (экстраполятор) нулевого порядка (ФНП), который 

преобразует дискретные импульсы в ступенчатый непрерывный сигнал . Его 

передаточная функция: 

     

   Непрерывный объект управления , на выходе которого 

формируется регулируемая величина . 

 

Передаточная функция замкнутой дискретной системы определяется 

следующим выражением: 

 

где  — это Z-преобразование приведенной непрерывной части (ФНП 

+ Объект). 

 

2. Математическое описание дискретного ПИД-регулятора 

 

Основой для построения цифрового алгоритма служит уравнение 

непрерывного (аналогового) ПИД-регулятора (формула 54): 

 

где: 

   K — коэффициент усиления; 

    — постоянная времени интегрирования; 

    — постоянная времени дифференцирования. 

 

Для реализации на контроллере (в дискретном времени) необходимо 

заменить операции интегрирования и дифференцирования численными 

методами. 
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Дискретизация: 

1.  Интегральная часть: Аппроксимируется суммой (метод 

прямоугольников): 

     

2.  Дифференциальная часть: Аппроксимируется первой обратной 

разностью: 

     

 

Подставив эти приближения в исходное уравнение, получаем 

рекуррентное уравнение для выхода регулятора в момент времени kT (формула 

55): 

 

(Примечание: в формуле из записей используется уточненная 

аппроксимация интеграла, близкая к методу трапеций, что повышает точность). 

 

Z-преобразование и Передаточная функция: 

Используя свойства Z-преобразования для суммы ( ) и разности (

), получаем передаточную функцию дискретного ПИД-регулятора: 

 

 

 

Ее можно привести к стандартному виду: 
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Связь параметров: 

Коэффициенты цифрового регулятора связаны с аналоговыми 

параметрами следующим образом: 

    — интегральный коэффициент. 

    — дифференциальный коэффициент. 

    — пропорциональный коэффициент. 

(Важно: Вычитание  в формуле для  появляется при 

использовании метода трапеций для интегрирования, чтобы компенсировать 

частотные искажения. В простейшем случае метода прямоугольников часто 

принимают ). 

 

Обычно коэффициент  в цифровом регуляторе выбирается меньше, чем 

в аналоговом прототипе, из-за наличия задержек, вносимых квантованием. 

 

3. Модификации ПИД-регуляторов 

 

Классическая схема имеет недостатки, такие как резкие скачки 

управляющего сигнала при скачкообразном изменении уставки (так называемый 

"Proportional/Derivative Kick"). Для устранения этого применяется 

модифицированная структура, показанная на рис. 2. 
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Особенности модифицированной схемы (формула 57): 

В этой схеме дифференцирование и пропорциональное усиление 

применяются не к ошибке , а непосредственно к выходной величине объекта 

 (с отрицательным знаком), в то время как интегрирование применяется к 

ошибке. 

 

Уравнение регулятора в Z-форме: 

 

(В записях формула 57 обозначена как , что 

соответствует структуре I-PD или PI-D, где  участвует только в 

интегральной части). 

 

Преимущества модификации: 

1.  Отсутствие «удара»: При резком изменении уставки  интегральная 

составляющая нарастает плавно, а P и D составляющие реагируют только на 
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изменение выхода объекта, что предотвращает мгновенный скачок 

управляющего воздействия. 

2.  Качество переходного процесса: Обеспечивает меньшее 

перерегулирование (лучшее демпфирование). 

3.  Плавность: Система избавляется от чрезмерных скачков в процессе 

управления. 

 

На рис. 3 схематично изображен контур с таким регулятором, где элементы 

цифровой обработки (сумматоры, задержки) реализуют описанный закон. 

 

4. Реализация и пример расчета 

 

Физическая реализация цифрового регулятора выполняется на 

микроконтроллерах или ПЛИС. Основными блоками алгоритма являются: 

1.  Сумматор ( ) — сложение сигналов. 

2.  Умножитель ( ) — умножение на коэффициенты . 

3.  Звено задержки ( ) — запоминание значения с предыдущего такта. 

 

Пример (из записей): 

Рассматривается объект с передаточной функцией  и 

периодом квантования . 

Z-преобразование приведенной части с учетом фиксатора: 
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После выбора параметров регулятора (например,  

рассчитывается из ) формируется передаточная функция разомкнутой и 

замкнутой систем. Результатом анализа является переходная характеристика, 

показанная на рис. 4. График демонстрирует дискретный характер изменения 

выходной величины (точки) и её аппроксимацию. 

 

5. Настройка параметров (Тюнинг) 

 

Настройка дискретных регуляторов сложнее аналоговых из-за параметра T 

(период квантования). 

 

Способы настройки: 

1.  Метод Циглера-Никольса: 

       Можно настроить аналоговый прототип по таблицам Циглера-

Никольса, а затем пересчитать коэффициенты в дискретные по формулам связи. 

       Либо использовать модифицированные таблицы непосредственно для 

дискретных версий, учитывая, что период T вносит фазовое запаздывание . 

2.  Метод расширенных частотных характеристик: Позволяет учесть 

влияние квантования на запасы устойчивости. 

3.  Аналитические методы: 

       Корневой годограф (Root Locus) в Z-плоскости. 

!" #$%"! " #$ $ $= =

!"
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       Размещение полюсов (Pole Placement) — выбор коэффициентов так, 

чтобы полюса замкнутой системы  находились в желаемых 

точках внутри единичной окружности. 

4.  Ручная настройка по переходной характеристике: (упомянуто в записях 

"по таблицам и по переход. процессу"). Анализируется реакция на скачок (рис. 

4) и подстраиваются  (быстродействие),  (точность),  (демпфирование). 

 

Важное замечание по выбору T: 

Период квантования T должен быть достаточно малым, чтобы 

восстановить сигнал (теорема Котельникова-Шеннона), обычно выбирают 

, где  — минимальная постоянная времени объекта. 

Слишком малый T может привести к вычислительным ошибкам из-за 

ограниченной разрядности процессора (эффект квантования коэффициентов). 

2. Представление систем в пространстве состояний. 

Метод пространства состояний является фундаментальным подходом в 

современной теории управления, позволяющим описывать как непрерывные, так 

и дискретные, линейные и нелинейные, стационарные и нестационарные 

системы, в том числе системы со многими входами и выходами (MIMO). Ниже 

представлено подробное описание данного подхода с опорой на 

предоставленные материалы и дополнительные теоретические сведения. 

 1. Понятие состояния динамической системы 

! " # " # $!" # " #+ =

!" !" !"

!"#$ "#%&' !"#$ $! … !"#$



9 

 

Основой метода является понятие состояния. Как определено в начале 

(рис. 1), состояние динамической системы — это наименьший набор 

переменных, называемых переменными состояния, такой, что знание этих 

переменных в момент времени  и знание входа  при  позволяет 

полностью определить поведение системы в любое время . 

Переменные состояния ( ) образуют минимальный набор 

параметров, определяющих состояние системы -го порядка. 

Важно отметить, что переменные состояния не обязательно должны быть 

физически измеримыми или наблюдаемыми величины. Они являются 

внутренними характеристиками системы ("памятью" системы). 

Если  переменных состояния необходимы для полного описания 

поведения некоторой системы, то эти переменные рассматриваются как 

компоненты вектора состояния : 
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Вектор  определяет поведение системы во время . 

 2. Геометрическая интерпретация (Пространство состояний) 

 

Совокупность всех возможных значений переменных состояния образует 

-мерное пространство, называемое пространством состояний (рис. 2). Оси 

координат этого пространства соответствуют переменным состояния 

. 

Поведение системы можно представить геометрически как движение 

конца вектора состояния  по траектории в этом пространстве от начальной 

точки  к некоторой конечной точке . При смене базиса 

(преобразовании координат, например, к координатам ) само состояние 

системы не меняется, меняется лишь его математическое представление. 

 3. Уравнения состояния 

Математическая модель в пространстве состояний состоит из двух 

уравнений: уравнения состояния (динамики) и уравнения выхода. 

 Для непрерывных систем  

Уравнения записываются в дифференциальной форме: 

1.  Уравнение состояния: 
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2.  Уравнение выхода: 

     

Здесь матрицы  могут быть зависящими от времени 

(нестационарными), но на практике мы часто считаем их стационарными 

(константами). 

 Для дискретных систем 

Для цифровых систем управления и дискретных процессов 

дифференциальные уравнения заменяются на разностные. Переход от момента 

времени  к дискретному шагу  осуществляется с периодом квантования . 

1.  Уравнение состояния (динамики): 

     

    Это уравнение показывает, как состояние системы на следующем шаге (

) зависит от текущего состояния и текущего входного воздействия. 

2.  Уравнение выхода: 

     

    Это алгебраическое уравнение связывает внутренние переменные 

состояния с измеряемыми выходами. 

Расшифровка обозначений и размерности матриц (рис. 4): 

    — вектор состояния размерности . 

    — вектор выхода размерности . 

    — вектор входа (уставка/управление) размерности . 

    — матрица системы (переходная матрица) размерности . 

Характеризует собственную динамику системы. 

    — матрица входа (управления) размерности . Определяет, 

как входные сигналы влияют на состояния. 

    — матрица выхода (измерений) размерности . Определяет, 

какие комбинации состояний подаются на выход. 
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    — матрица прямой передачи размерности . Характеризует 

прямое прохождение сигнала со входа на выход, минуя динамику (часто равна 

нулю в физических системах). 

 4. Структурная схема и сравнение подходов 

 

На рис. 5 представлена структурная схема дискретной системы в 

пространстве состояний. 

   Элемент  обозначает задержку на один такт (аналог интегратора в 

непрерывных системах). 

   Сигнал  поступает на вход задержки, а на выходе получается 

. 

   В системе присутствуют обратные связи через матрицу  и прямые 

связи через матрицы . 

Сравнение с методом передаточных функций (ПФ): 

1.  Передаточная функция (ПФ): 

       Дает краткое описание «вход-выход». 

       Позволяет управлять только доминирующими полюсами системы. 

       Остальные моды (состояния) игнорируются или «уводятся» (скрыты за 

счет сокращения нулей и полюсов), что может быть опасно, если скрытая часть 

неустойчива. 

       Описание: . 

2.  Пространство состояний (ПС): 

       Позволяет управлять всеми полосами (режимами) системы. 
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       Дает полную информацию о внутренней структуре. 

       Однако, это существенно повышает порядок системы при синтезе 

управления, так как часто требуется восстанавливать неизмеряемые переменные 

состояния. Для этого используется наблюдатель (Observer), который должен 

иметь тот же порядок, что и сама система. 

 5. Переход от разностного уравнения к пространству состояний 

(Канонические формы) 

Существует несколько способов записи уравнений состояния для одной и 

той же системы. Один из распространенных методов — получение управляемой 

канонической формы из разностного уравнения (рис. 6 и 7). 

Рассмотрим разностное уравнение n-го порядка: 

 

(В записи на рис. 6 индексы смещены относительно k, используется форма 

записи через задержки). 

В -области передаточная функция имеет вид: 

 

Матричная форма: 

Для реализации такой системы в пространстве состояний выбирается 

специальный базис. 

Уравнение состояния: 

 

 

Здесь матрица  (или ) имеет характерную структуру: единицы над 

главной диагональю (сдвиг состояний:  и т.д.), а последняя строка 
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содержит коэффициенты знаменателя передаточной функции с обратным 

знаком. Вектор входа  содержит нули и единицу в конце. 

Уравнение выхода (рис. 7): 

Вектор выхода y(k) формируется сложнее, так как необходимо учесть 

числитель передаточной функции. 

 

 

Здесь коэффициенты матрицы  вычисляются рекурсивно, чтобы 

компенсировать влияние обратных связей  и обеспечить нужные 

коэффициенты передачи . Слагаемое  соответствует матрице прямой 

передачи  (если , то система имеет прямую связь входа с выходом без 

задержки). 

3. Запись разностного уравнения в векторной форме (метод прямого 

программирования). Блок-схема системы в пространстве состояний. 

 1. Метод прямого программирования 
 

Метод прямого программирования (часто называемый реализацией в виде 

канонической управляемой формы) позволяет перейти от передаточной функции 

или разностного уравнения высокого порядка к системе уравнений первого 

порядка в векторно-матричном виде. Этот метод оптимизирует количество 

элементов задержки, делая его равным порядку системы n. 

 

 Исходная передаточная функция 
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Рассмотрим дискретную систему, описываемую передаточной функцией 

общего вида: 

 

 

 

Где: 

    — изображение выхода, 

    — изображение входа (в некоторых записях ), 

    — оператор задержки на один такт. 

 

 Суть метода 

Метод заключается в введении промежуточной переменной (или 

вспомогательной функции) , чтобы разделить числитель и знаменатель. 

Передаточную функцию можно представить как произведение двух звеньев (см. 

рис. 2): 

 

 

 

Это позволяет разбить уравнение на две части: 

 

1.  Рекурсивная часть (формирование состояний): 

     

    Отсюда получаем уравнение для вспомогательной переменной: 

     

 

2.  Выходная часть (сборка выхода): 
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 Структурная реализация (Рис. 2) 

На рис. 2 показана схема, реализующая этот подход (нижняя часть 

рисунка). 

 

   Входной сигнал поступает на сумматор. 

   Цепочка элементов задержки  расположена по центру. Выходы этих 

элементов являются переменными состояния системы. 

   Коэффициенты  образуют обратные связи (идут «назад» к входному 

сумматору со знаком минус). 

   Коэффициенты  образуют прямые связи (идут «вперед» к выходному 

сумматору). 
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Такая структура называется прямой канонической формой (Direct Form II), 

так как она использует минимальное число элементов памяти. 

 

 2. Запись разностного уравнения в векторной форме 

 

Для анализа и синтеза сложных систем удобно использовать описание в 

пространстве состояний. Это заменяет одно уравнение n-го порядка на систему 

из n уравнений первого порядка. 

 

 Введение переменных состояния 

Определим переменные состояния  как выходы 

элементов задержки. 

Согласно методу прямого программирования (каноническая управляемая 

форма), переменные выбираются следующим образом: 

    — выход последнего элемента задержки ( ). 

    — выход предпоследнего элемента ( ). 

   ... 

    — выход первого элемента задержки ( ). 
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 Векторно-матричные уравнения 

Система описывается двумя основными уравнениями (см. рис. 6 и рис. 7): 

 

1.  Уравнение состояния: 

     

2.  Уравнение выхода: 

     

 

Где  — вектор состояния. 

 

 Вид матриц для управляемой канонической формы 

На основе уравнений, приведенных на рис. 7 и рис. 8, матрицы имеют 

следующую структуру (для системы порядка n): 

 

Матрица системы : 

Имеет характерную «сопровождающую» форму (Фробениусова матрица). 

На главной супердиагонали стоят единицы, а нижняя строка содержит 

коэффициенты знаменателя с обратным знаком: 

 

 

 

Матрица управления : 

В данной форме вход воздействует непосредственно только на последнюю 

переменную состояния (которая замыкает обратные связи): 
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Матрица выхода  и коэффициент D: 

Уравнение выхода сложнее, так как нужно учитывать прямую передачу 

сигнала, если . 

Согласно формулам на рис. 8, уравнение выхода записывается как: 

 

 

 

Следовательно: 

   Вектор  

   Скаляр  

 

Если система строго физически реализуема (запаздывание хотя бы на 1 

такт, т.е. ), то , а элементы вектора  упрощаются до . 

 

 3. Блок-схема системы в пространстве состояний 
 

Общая блок-схема, соответствующая векторно-матричному описанию, 

представлена на рис. 5 (изображение 7). Эта схема является универсальной для 

любых линейных стационарных систем. 
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 Описание элементов схемы (Рис. 5): 

Схема наглядно демонстрирует потоки сигналов согласно уравнениям: 

1.  Вход  умножается на матрицу  (блок  или  в разных 

нотациях, на схеме вход идет в сумматор). 

2.  Сумматор формирует сигнал . В него приходят сигналы от входа 

и от обратной связи состояния. 

3.  Блок задержки  (аналог интегратора в непрерывных системах). На 

его вход поступает , а с выхода снимается вектор текущего состояния 

. 

4.  Матрица  (блок обратной связи). Вектор состояния  умножается 

на матрицу  и возвращается на сумматор. Это определяет собственную 

динамику системы. 

5.  Матрица . Вектор состояния  умножается на матрицу выхода  

для формирования выходного сигнала. 

6.  Прямая связь . Если она есть, входной сигнал  умножается на  

и суммируется с выходом (на схеме это верхняя ветвь, идущая к выходному 

сумматору). 
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Таким образом, рис. 5 иллюстрирует фундаментальный принцип 

пространства состояний: будущее состояние системы определяется её текущим 

состоянием и текущим входом, а выход системы — мгновенная функция 

состояния и входа. 

 

4. Понятие наблюдаемости и управляемости. Критерии наблюдаемости 

и управляемости. 

Для анализа динамических свойств дискретных систем автоматического 

управления фундаментальными являются понятия управляемости и 

наблюдаемости. Эти свойства определяют принципиальную возможность 

перевода системы в желаемое состояние и возможность восстановления 

информации о внутренних переменных системы по её выходу. 

Рассмотрим линейную дискретную стационарную систему, описываемую 

уравнениями состояния в векторно-матричной форме (см. рис. 1, где 

представлена структурная схема системы с обратной связью и регулятором): 

 

 

Где: 

    — вектор состояния размерности ; 

    — вектор управления размерности ; 

    — вектор выхода размерности ; 

    — матрица динамики системы ( ); 
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    — матрица входа ( ); 

    — матрица выхода ( ); 

    — период дискретности. 

 1. Управляемость (Controllability) 

Определение: Система называется полностью управляемой по состоянию, 

если существует такое управление (последовательность управляющих 

воздействий) , которое за конечное число шагов  переводит систему из 

любого произвольного начального состояния  в любое заданное конечное 

состояние  (часто рассматривается перевод в начало координат, т.е. в нуль). 

Геометрически это означает, что мы можем переместить вектор состояния 

в любую точку пространства состояний, изображенного на рис. 2 (где показаны 

оси ). 

 

 Критерий управляемости (Критерий Калмана) 

Для вывода критерия рассмотрим уравнение состояния и развернем его 

рекурсивно для последовательных моментов времени: 

1.  При :  

2.  При :  

... 

3.  Для -го шага общее выражение имеет вид: 

     

Перегруппируем слагаемые, чтобы выделить начальное состояние и 

управление: 
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Обозначим матрицу управляемости как U (или S_{contr}): 

 

Критерий: Система полностью управляема тогда и только тогда, когда ранг 

матрицы управляемости  равен порядку системы : 

 

Если ранг меньше , то в пространстве состояний существуют 

подпространства, в которые невозможно попасть никаким управлением. 

Связь с передаточной функцией: 

Если система описывается передаточной функцией (z-преобразование), то 

условием полной управляемости (и наблюдаемости) является отсутствие 

сокращения нулей и полюсов. 

Пример: 

 

Здесь происходит сокращение множителя . Это означает, что 

соответствующая мода системы (собственное движение, связанное с этим 

корнем) либо неуправляема, либо ненаблюдаема. 

 

 Управляемость по выходу 

Система полностью управляема по выходу, если можно перевести 

выходной вектор  в любую точку пространства выходов. 

Матрица управляемости по выходу имеет вид: 

 

Условие управляемости по выходу (для случая, когда матрица прямой 

связи ): 
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где  — размерность вектора выхода. Иллюстрация расположения 

полюсов и плоскости, связанной с динамикой, представлена на рис. 3. 

 

 2. Наблюдаемость (Observability) 

Определение: Система называется полностью наблюдаемой, если по 

результатам измерений выходной переменной  на конечном интервале 

времени (за  тактов) можно однозначно определить начальное состояние 

системы . 

Здесь мы рассматриваем свободное движение системы (при ): 

 

 

Физический смысл наблюдаемости показан на рис. 4: имея график выхода 

 и делая выборки , мы должны восстановить вектор . 

 Критерий наблюдаемости 

Запишем выражение для выхода в последовательные моменты времени: 

1.   

2.   

3.   

... 

4.   
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В матричном виде эта система линейных алгебраических уравнений 

записывается как: 

 

Матрица наблюдаемости  (или ) составляется из блоков: 

 

Для скалярного выхода матрица  имеет размерность . Если выход 

векторный — то . 

Критерий: Система полностью наблюдаема тогда и только тогда, когда 

ранг матрицы наблюдаемости равен порядку системы : 

 

Это условие гарантирует, что система уравнений относительно 

неизвестных компонент вектора  имеет единственное решение. Если 

, то существуют такие начальные состояния (отличные от нуля), 

которые вызывают нулевой выходной сигнал («невидимые» движения системы), 

и восстановить их невозможно. 

 3. Принцип дуальности (Duality Principle) 

Существует фундаментальная связь между понятиями управляемости и 

наблюдаемости, называемая принципом дуальности. Этот принцип позволяет 

переносить результаты анализа управляемости на анализ наблюдаемости и 

наоборот. 

Рассмотрим две системы: 

1.  Исходная система : . 
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2.  Дуальная система : , где символ  обозначает эрмитово 

сопряжение (или транспонирование  для вещественных матриц). 

В дуальной системе матрицы определяются следующим образом 

относительно исходной: 

   Матрица динамики дуальной системы: . 

   Матрица входа дуальной системы: . 

   Матрица выхода дуальной системы: . 

Формулировка принципа:  

Система  является полностью управляемой (наблюдаемой) тогда и 

только тогда, когда дуальная система  является полностью наблюдаемой 

(управляемой). 

Математически это подтверждается структурой матриц. 

Матрица управляемости системы : 

 

Матрица наблюдаемости системы  (с учетом транспонирования): 

 

Видно, что . Следовательно, их ранги совпадают: 

 

Это свойство чрезвычайно полезно при проектировании систем 

управления, так как позволяет использовать одни и те же алгоритмы (например, 

при синтезе наблюдателя состояния) для решения задач, двойственных задачам 

синтеза регулятора. Если в исходной системе можно управлять состояниями, то 

в дуальной системе можно наблюдать эти состояния. 
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30. Дискретные регуляторы состояния 

Под состоянием системы понимается совокупность знаний, которые наряду с 
входными функциями и уравнениями, описывающими динамику системы, 
позволяют определить ее будущее и выходные переменные. 

Состояние – это вектор (формально). 

Вектор состояний – вектор физических переменных систем (перемещение, 
скорость, ускорение и т. д.) или их функций, относительно которых 
записывается уравнение системы. 

Вектор управления – характеризует те воздействия на систему, которые 
сознательно формируются проектировщика для достижения поставленной 
цели. 

Состояние динамической системы – это наименьший набор переменных, 
называемых переменными состояния такой, что значение этих переменных в 
момент t = t0, а также значения входа u(t) при t ≥ 0 полностью определяет 
поведение системы в любой момент времени t ≥ t0. 

Переменные состояния – минимальный набор переменных, определяемых 
состоянием системы. Набор состоит из n переменных, переменные состояний 
наблюдательно должны быть физически измеримыми или наблюдаемыми.  

Вектор состояния. Если n переменных состояния, наблюдаемых для полного 
описания поведения некоторой системы, то этот вектор рассматривается как 
вектор. 

 
Пространство состояний – это n-мерное пространство с координатными осями. 
Любое состояние может определяться точкой. 



 

 



В чём преимущество пространства состояний в сравнении с передаточными 
функциями? Более простая форма описания, но позволяет управлять 
доминирующими полюсами системы, а остальные игнорировать или отводить 
на расстояние. Существенно повышается порядок итоговой системы, т.к. 
регулятор состояний должен иметь порядок итоговой системы. 

 

 



 
 

  



31. Дискретные наблюдатели состояния 

Измерение наблюдения является необходимой частью управления. Под 
наблюдаемостью в отличие от измерений понимается возможность косвенного 
определения величин (переменных состояний объекта) на основе измерения 
некоторых других величин (входных переменных) и использование априорной 
информации (A и C). 

Термин «полностью наблюдаемая система или объект» означает, что зная 
матрицы A и C системы или объекта, а также его выход Y(t) на (t0, t1), где  
t1 < ∞ при условии, что объект находится в свободном движении, что  
u(t) ≡0, можно вычислить значения вектора состояния в момент начала 
наблюдения (н.у.). 

 
 

 

 



 
R(k) задаёт рабочую точку, что приводит к нулевой ошибке. 

Задающее воздействие 0, т.к. рассматривается динамика системы 
относительно опорной (рабочей) точки, поэтому для простоты R(k) = 0.  

Таким образом наша задача найти k такой, который бы обеспечил заданный 
вид характеристического уравнения, отвечающего за динамику системы (в том 
числе и устойчивость). 

 
1. Система полностью управляема по состоянию. Такая система, в которой 

можно перевести любое начальное состояние x(t0) в любое конечное 
состояние X(tx) не более, чем за n тактов, где n – порядок системы. 



 

 



 
Система называется полностью наблюдаемой, если каждое состояние x(0) 
может быть определено из наблюдения y(kT) в течение конечного числа 
периодов выборки, т.е. система полностью наблюдаема, если каждое 
изменение состояния влияет на каждый выходной вектор.  

 
 



 
Условие полной наблюдаемости такое же, как и в управляемости, т.е. 
отсутствие сокращения нулей и полюсов. 

 



 
Тогда принцип дуализма утверждает, что S1 является полностью управляемой 
(наблюдаемой по состоянию), следовательно, и S2 является такой же.  

 
Если мы можем в какой-то системе управлять её состоянием, то в дуальной 
системе можем наблюдать.  

  



 

 



 

 



Из этого следует:  

1. Х.у. для регулятора состояний и наблюдателя независимы. 
2. Быстродействие наблюдателя должно быть от 2 до 5 раз выше 

регулятора, при этом желательно, чтобы динамика регулятора была без 
колебаний. 

Оказывается внутри системы регулятора и наблюдателя будет неустойчивость, 
если их скорости разные, поэтому нужно проверять всю систему на 
устойчивость. 

32. Реализация цифровых регуляторов и фильтров. 

Среди систем автоматического управления распространены системы, которых 
сигналы могут быть описаны дискретными функциями времени. Дискретность 
сигналов управления будет присутствовать, например, в случае применения 
для управления объектов ЭВМ. В принципе системы, в которых используются 
цифровые преобразователи сигналов или ЭВМ, будут характеризоваться 
присутствием дискретных сигналов управления или информации. 

ЭВМ считывает цифровой код (двоичный код) управляемой величины y(t) на 
выходе АЦП под управлением программы и реализует алгоритм 
регулирования, используя выбранный закон регулирования. Вычисленное 
значение управления выводится и ЦАП преобразуется в сигнал управления 
u(t), поступающей на вход управления объекта управления. 

 
 



Изменение квантованного сигнала происходит в моменты квантования, 
кратные периоду T квантования по времени. Таким образом, квантованный 
сигнал будет характеризоваться периодом квантования и значением 
ближайшего фиксированного уровня. 

Типичным примером устройства, в котором имеет место комбинированное 
квантование является АЦП и цифровой прибор, построенный при помощи 
АЦП. Выходная информация таких устройств обновляется с периодом, 
определяемым длительностью преобразования входного сигнала в цифровой 
вход.  

 
Дискретные системы с комбинированным квантованием являются цифровыми 
системами. 

Цифровой сигнал не является непрерывным, поэтому после того, как 
процессор вырабатывает цифровую последовательность воздействий, эта 
последовательность должна быть превращена в дискретный сигнал, который 
может воспринимать объект. Подают ступенчатый сигнал, который 
соответствует выработанному сигналу воздействия. 

Ключ показывает, что система замыкается только в момент времени T0, а 
остальное время она является разомкнутой.  

Дискретная системы не может иметь показатели качества лучше, чем 
непрерывная система, однако вследствие того, что процессор позволяет 
реализовывать широкий спектр цифровых управлений, именно цифровая 
система показывает наибольшую эффективность. 

  



 

 



 

 

 
 

 

 



 
Для реализации цифровых регуляторов и фильтров используют: сумматоры, 
умножители, элементы задержки ($!"). 

Регулятор является вычислительным алгоритмом, который преобразует 
входящую последовательность чисел в выходящую таким образом, что 
характерно изменение некоторым предписанным образом. Т.к. этот алгоритм ( 
в общем случае регулятор) работает на одной тактовой частоте, все остальные 
частоты отфильтровываются, поэтому регулятор также называют цифровым 
фильтром. 

 
 

 



 

 



33. Способы представления передаточных функций для 
уменьшения ошибок их представления в цифровых фильтрах. 
1. Каскадная (цепочечная) форма реализации 
Передаточная функция представляется в виде произведения передаточных 
функций звеньев второго (и, возможно, первого) порядка: 
G(z) = ∏ "!($)"

!#$  
Это позволяет: 
- изолировать влияние ошибок округления в каждом звене; 
- уменьшить общую чувствительность к квантованию коэффициентов; 
- избежать больших погрешностей, возникающих при прямой реализации 
высокого порядка. 
 
Nакая структура особенно эффективна при реализации фильтров с полюсами, 
близкими к единичной окружности. 
 
2. Параллельная форма реализации 
Передаточная функция раскладывается на сумму простейших дробей: 
G(z) = ∑ "!($)"

!#$  
Преимущества: 
- снижается взаимное влияние ошибок квантования между звеньями; 
- улучшается численная устойчивость по сравнению с прямой формой. 
 
3. Реализация через переменные состояния (форма пространства 
состояний) 
Вместо непосредственного использования передаточной функции 
применяется описание системы в виде уравнений состояния: 
x(k+1) = Ax(k) + Bu(k), y(k) = Cx(k) + Du(k) 
Преимущества: 
- позволяет использовать ортогональные или близкие к ним преобразования 
(например, модальное управление); 
- обеспечивает минимальную чувствительность к ошибкам округления при 
правильном выборе матриц (A, B, C). 
Регуляторы по состоянию (например, оптимальные по квадратичному 
критерию) обладают лучшими свойствами робастности и меньшей 
чувствительностью к параметрическим ошибкам. 
 
4. Использование ортогональных базисов или специальных 
канонических форм 
Например: 
- Фробениусова (компаньонная) форма — проста, но чувствительна к 
ошибкам; 
- Модальная (диагональная или жорданова) форма — минимизирует 
взаимосвязь между состояниями, снижает чувствительность; 



- Ортогональные реализации (упоминаются в контексте фильтра Калмана и 
рекурсивных методов) — обеспечивают устойчивость и малую 
чувствительность. 
5. Сведение к звеньям с вещественными коэффициентами 
Если система имеет комплексно-сопряжённые полюсы/нули, их объединяют 
в биквадратные (второго порядка) звенья с вещественными коэффициентами. 
Это: 
- исключает необходимость работы с комплексной арифметикой; 
- уменьшает ошибки округления и повышает устойчивость. 
Заключение 
Прямая реализация передаточной функции в виде одного блока (особенно 
высокого порядка) наиболее подвержена ошибкам квантования 
коэффициентов, что может привести к: 
- смещению полюсов; 
- потере устойчивости; 
- значительному искажению частотной характеристики. 
 
Поэтому рекомендуется использовать структурные методы (каскадную, 
параллельную или пространства состояний), которые минимизируют влияние 
ошибок представления в цифровых системах управления и фильтрации. 
 
34. Фильтры с бесконечной и конечной импульсными 
характеристиками. 
 
1. Фильтры с конечной импульсной характеристикой (КИХ-фильтры) 
- Определение: КИХ-фильтры — это цифровые фильтры, у которых 
импульсная характеристика имеет конечную длительность, т.е. реакция на 
единичный импульс становится точно нулевой через конечное число тактов. 
- Структура передаточной функции: 
  H(z) = b0 + b1 z-1+ b2 z-2 + … + bM z-M 
  В числителе — полином по z-1, знаменатель равен 1 (нет обратной связи). 
- Особенности: 
  - Всегда устойчивы, поскольку полюсы находятся в начале координат (z = 
0). 
  - Могут обеспечивать линейную фазовую характеристику при 
симметричных коэффициентах, что важно для сохранения формы сигнала. 
  - Требуют большего порядка (больше коэффициентов), чем БИХ-фильтры, 
для достижения аналогичных частотных характеристик. 
Упоминаются в контексте реализации регуляторов с минимальной 
дисперсией (например, PMI3, PMI4), где желательно отсутствие полюсов для 
повышения устойчивости к ошибкам квантования. 
 
 



2. Фильтры с бесконечной импульсной характеристикой (БИХ-
фильтры) 
 
- Определение: БИХ-фильтры имеют бесконечную импульсную 
характеристику, т.е. их реакция на единичный импульс теоретически никогда 
не обращается в ноль из-за наличия обратной связи. 
- Структура передаточной функции: 
  H(z) = %!&%"'

#"&⋯&%$'#$
$&)"'#"&⋯&)%'#%

 
  Наличие полюсов (корней знаменателя) определяет динамику фильтра. 
- Особенности: 
  - Могут быть неустойчивыми, если хотя бы один полюс лежит вне 
единичной окружности на z-плоскости. 
  - Обеспечивают более крутые частотные характеристики при меньшем 
порядке по сравнению с КИХ. 
  - Чувствительны к ошибкам квантования коэффициентов, особенно при 
близких к единичной окружности полюсах. 
- Активно используются в регуляторах с обратной связью (например, ПИД-
регуляторы, регуляторы по состоянию, LQ-регуляторы). Подчеркивается 
необходимость аккуратного выбора структуры реализации (каскадная, 
параллельная) для снижения чувствительности к ошибкам представления. 
 

 
 
Вывод: При проектировании цифровых систем управления предпочтение 
часто отдаётся БИХ-фильтрам за счёт их компактности и эффективности, 
однако при высоких требованиях к надёжности и устойчивости (например, в 
адаптивных системах или при ограниченной разрядной сетке) рекомендуется 
использовать КИХ-структуры или гибридные подходы (например, каскадное 
соединение биквадратных звеньев). 
 
 


